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A B S T R A C T   

Drifting macrophyte detritus cast along the shore, often called wrack, can wash around, accumulate in the surf 
zone and constitute a habitat where fishes forage and/or hide. We compared fish assemblages associated with 
Posidonia oceanica wrack beds with those associated with bare sand in the surf zone of Sardinia Island (Italy), NW 
Mediterranean Sea. In July–August 2020, in situ non-destructive visual censuses were performed to count fishes 
and record their behaviour at 3 locations, each including 3 shores characterized by both P. oceanica wrack beds 
and bare sand. The assemblages were mainly composed of small and juvenile/sub-adult individuals and signif
icantly differed between the two habitats. Nine taxa were shared by both habitat types, seven were exclusively 
associated with P. oceanica wrack and only one species was found exclusively on sand. Higher species richness 
and fish density (without considering the contribution of gregarious fish in the water column) were observed on 
P. oceanica wrack than on sand. Assemblages were numerically dominated by Diplodus sargus, D. vulgaris and 
Mullus surmuletus. These species and other fishes, mostly represented by invertivorous (e.g., labrids) and 
omnivorous species, were often observed feeding on P. oceanica wrack and using the resuspended dark-brown 
vegetal fragments to hide. These findings clearly suggest that P. oceanica wrack beds attract fishes from sur
rounding habitats, some of them of commercial importance, providing food and habitat for juvenile and sub- 
adult stages.   

1. Introduction 

Seagrass meadows, like other marine coastal vegetated ecosystems, 
are highly productive, play a pivotal role in sustaining biodiversity and 
deliver essential ecosystem services (Duarte et al., 2005; Orth et al., 
2006; Duarte and Krause-Jensen, 2017; Unsworth et al., 2018). Their 
primary production often exceeds the herbivore biomass consumption. 
The surplus contributes to local carbon burial, subsidises the local 
detrital food web or drifts towards other ecosystems, where it supplies 
local communities with an allochthonous food resource and provides 
habitats for a variety of vertebrate and invertebrate species (Mateo and 
Romero, 1997; Polis et al., 1997; Moore et al., 2004; Duarte et al., 2005; 
Heck et al., 2008; Haegen et al., 2012; Hyndes et al., 2014; Zimmer, 
2019). From a quantitative viewpoint, it has been estimated that up to 
80% of the seagrass primary production can be exported annually to 
other ecosystems, such as submarine canyons, sublittoral rocky reefs, 
submerged marine caves and sandy shores (Colombini and Chelazzi, 

2003; Dimech et al., 2006; Heck et al., 2008; Cresson et al., 2012; 
Rastorgueff et al., 2015). 

Along sandy shores, deposits of drifting seagrass (and seaweed) 
detritus, often called “wrack” (Rossi and Underwood, 2002; Dugan et al., 
2003), are common in many areas around the world. They may accu
mulate in the supralittoral zone, form berm-like structures (Short, 1999) 
and play a role in the geomorphological beach dynamics, especially in 
low energy beaches (Vacchi et al., 2017). Wrack can also enrich with 
nutrients and organic matter the otherwise organically-poor substrates 
and allow the subsistence of benthic invertebrates, seabirds and dune 
vegetation (Dugan et al., 2003; Colombini et al., 2009). On sheltered and 
embayed shores, wrack can exchange between the supralittoral beach 
and the surf zone, where this organic material can float and deposit on 
the seafloor and form patches of an organically-enriched brown bed 
interspersed within an unvegetated bare sandy matrix (Simeone et al., 
2013; Vacchi et al., 2017; McLachlan and Defeo, 2018). Drifting wrack 
can be used by small gregarious fishes as a shelter (Hasegawa et al., 
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2017) and by many juvenile fishes to hide from predators and/or as a 
food source, often because preys are associated with this drifting wrack 
(Lenanton et al., 1982; Robertson and Lenanton, 1984; Crawley et al., 
2006; Baring et al., 2018). Similarly, wrack beds could act as shelters in 
the surf zone i) providing a more complex substrate than bare sand and 
allowing small fishes to hide, ii) constituting a chromatic background 
where fishes may camouflage their silhouette, and (iii) increasing water 
turbidity due to water motion so that small fishes become hardly 
detectable by visual predators such as fishes or marine birds (Robertson 
and Lenanton, 1984; Lenanton and Caputi, 1989). Wrack beds can also 
provide feeding resources i) directly, for fishes eating detrital particles, 
and ii) indirectly, because the detritus hosts a variety of invertebrate 
prey (Hyndes and Lavery, 2005; Andrades et al., 2014; Baring et al., 
2014, 2018). By feeding among wrack beds and moving across space, 
fish could contribute to exchanges of seagrass carbon across habitats and 
ecosystems (Beck et al., 2001; Heck et al., 2008; Hyndes et al., 2014; 
Bussotti et al., 2018). 

On Mediterranean sandy shores, seagrass wrack and its accumula
tions as berm-like structures are mainly composed of leaves, rhizomes 
and roots of the endemic Posidonia oceanica (L) Delile (Mateo et al., 
2003; Costa et al., 2019) and the term banquettes is used to indicate their 
accumulations (Boudouresque and Meinesz, 1982; Boudouresque et al., 
2016). 

The above-mentioned accumulations may account for 10–55% of the 
total primary production of P. oceanica and are recognized to be 
important for coastal carbon cycling, for habitat and food provision to 
many marine and terrestrial invertebrates (Pergent et al., 1994, 1997; 
Mateo et al., 2003, 2006; Gallmetzer et al., 2005; Boudouresque et al., 
2012; Costa et al., 2014, 2019) and for limiting beach erosion (Vacchi 
et al., 2017). P. oceanica meadows are considered as a priority habitat for 
conservation in the European Union Habitat Directive (Dir 92/43/EEC), 
on the basis of a large body of scientific evidence showing their funda
mental contribution to supporting biodiversity, life cycles of many fish 
and invertebrate species and a variety of ecosystem services (Duarte, 
2000; Campagne et al., 2015). However, specific protection policies for 
seagrass detritus accumulations are seldom adopted. Posidonia oceanica 
wrack is frequently removed from the beaches to meet the requirements 
of the touristic demand (Boudouresque et al., 2016; Rotini et al., 2020), 
with significant ecological consequences for the supralittoral beach 
(Defeo et al., 2009) and, on sheltered shores, for the surf zone, by 
limiting the exchange of organic material. 

As for other seagrass wrack accumulations in the surf zone world
wide, fish species might use them as a habitat providing food and refuge 
(Personnic et al., 2014; Boudouresque et al., 2016), but scientific evi
dence regarding this potential role of P. oceanica wrack beds is limited 
and, to the best of our knowledge, no specific studies have been con
ducted to quantify its role with regard to fish assemblages in the surf 
zone. 

The purpose of the present study, therefore, is to investigate if and 
how fish assemblages change between P. oceanica wrack beds and bare 
substrates in the surf zone in the Sardinia Island (Western Mediterra
nean, Italy) sandy shores. Here P. oceanica meadows colonise several 
coastal substrates (Vacchi et al., 2017) and the removal of wrack is a 
common practice (Chessa et al., 2000; De Falco et al., 2008). As for other 
embayed beaches elsewhere, the wrack derives from adjacent seagrass 
meadows and its deposition on the beach starts as a strandline at the 
landward edge of the wave action, proceeds seaward up to the shoreline, 
is eroded away by the waves, float in the inner surf zone and is rede
posited forming patches at the end of an erosion cycle, indicating an 
important exchange between submerged and emerged beaches 
(Simeone et al., 2013). In all the Sardinia Island, P. oceanica wrack oc
curs in the higher accumulation in lower-energy beaches, that could be 
explained by the major extension of P. oceanica meadows in sheltered 
coastal sites (De Falco et al., 2008). In the present study, we expect that: 
(1) fish species composition, assemblage structure would be different 
and there would be more species, and more individuals on P. oceanica 

wrack patches than on bare sands; (2) fish would feed and hide more 
often in patches of P. oceanica wrack than on bare sands. 

2. Material and methods 

2.1. Study area and data collection 

During July–August 2020 we sampled three locations 100 s km apart 
from each other, along the coasts of Sardinia Island (Western Mediter
ranean Sea, Italy; Fig. 1). The locations were i) Stintino (40◦90′ N, 
08◦23′ E), ii) Olbia (40◦55′ N, 09◦29′ E) and iii) Villasimius (39◦08′ N, 
9◦31′ E), situated close to or partially within the borders of the Marine 
Protected Areas of ‘Isola dell’Asinara’, ‘Tavolara-Punta Coda Cavallo’ 
and ‘Capo Carbonara’, respectively. At each location, we randomly 
selected the surf zone of 3 different sandy shores (hereafter called 
‘sites’), 100s–1000 s m apart. All sites were sheltered, embayed shores, 

Fig. 1. Sampling locations hosting the nine study sites (beaches). P = Pazzona, 
S = Le Saline, Sp = Spalmatore (Stintino); CS = Cala Sabina, CB = Cala 
Brandinchi, CPip = Cala Pipara (Olbia); CP = Cala Pira, C= Campulongu, PG =
Porto Giunco (Villasimius). 
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where Posidonia oceanica wrack forms quite thick banquettes along the 
shore and wide patches in the submerged surf zone (Fig. 2 a, b: see photo 
of Pazzona beach as an example). At each site, we sampled fish assem
blages in two habitat types: i) randomly chosen P. oceanica wrack 
patches (hereinafter referred as PW) extending homogeneously enough 
(>50 m long) to run multiple fish assessments (i.e., visual census tran
sects; see details later); ii) bare sandy substrates (hereinafter referred as 
SAND). 

Fish were visually sampled by snorkeling, using 10 × 2 m UVC 
(underwater visual census) transects, following Harmelin-Vivien et al. 
(1985) during late morning. Three random transects were performed for 
each PW and SAND habitat at each site. Density and size of fish 
encountered were recorded along each transect. For fish schools larger 
than 10 individuals, abundance was estimated by using abundance 
classes (i.e., 11–30, 31–50, 51–100, 100–200 individuals) and by taking 
into account the mid-point for estimating the average density per tran
sect. In our sampling, the only taxon observed in large schools and, 
therefore, whose density was estimated was Atherina sp. Observers were 
trained with fish silhouettes of known total length and had more than 20 
years of experience in using UVC methods. 

Fish were sampled within the depth range of 0.5–2 m and transects 
were selected so as to accommodate 3 transects while avoiding habitat 
type edges. 

Multiple aspects of fish behavior were observed during visual census: 
for each censused fish, we recorded both swimming/feeding and hiding/ 
camouflage behaviors. For each fish censused across each transect we 
considered a fish as “feeding” when, depending on the species, it was 
observed “pecking” in the water column or on the bottom, actively 
grooving into the sediments or searching food items through the sea
grass wrack. About hiding/camouflage behaviors and predator/prey 
interactions, we differentiated between predatory ambushing behavior 
and prey hiding. 

2.2. Data analyses 

We assessed the distribution patterns of fish assemblages between 
PW and SAND by means of generalized linear models for the multivar
iate density data with the function ‘manyglm’ from the mvabund R 
package (Wang et al., 2012). Data were analysed without the contri
bution of the schooling species Atherina sp., whose density was esti
mated using abundance categories. Using ‘manyglm’ we could model 
the mean–variance relationship in our data by selecting a negative 
binomial distribution family as link function (Warton et al., 2012; 
Roberts, 2017; Warton and Hui, 2017). As predictor variables, we 
considered “Habitat” (2 levels: PW and SAND) and “Location” (3 levels: 
Stintino, Olbia, Villasimius) as crossed factors and “Site” (3 levels) as 
nested in “Location” with 3 replicated transects for each combination of 
factors. Dispersion of points from the centroid was also tested for the 
triangular matrix generated using Bray-Curtis index on the matrix of 
density data using ‘betadisper’ function from vegan R package (Ander
son, 2001; Oksanen et al., 2014). Non-metric multidimensional scaling 
(nMDS, Bray–Curtis distances) was used to visualize the results of the 

multivariate generalized linear models (r package vegan). 
To model the number of species and fish density as a function of 

“Habitat, Location and Site”, we used generalized linear mixed models 
(GLMM) with the ‘glmmTMB’ function in the R package glmmTMB 
(Brooks et al., 2017). We also analysed the abundance of Atherina with a 
multinomial baseline-category logit model, that allows to model not 
only dichotomous (binary), but also polychotomous responses, using the 
function mblogit from the R package mclogit 0.8.7.3 (Elff, 2021; see also 
Agresti, 2002). “Habitat” and “Location” were crossed predictors in the 
fixed part of the model and “Site” in the random part (fish density or 
number of species ~ Habitat x Location + (1|Site)). The distribution of 
the fish species that displayed a difference between habitats, based on 
the multivariate results from the mvabund data, was further explored 
considering a GLMM that included their size as a covariate (density ~ 
Habitat x Location + (1|Site/Location) + fish size). The fish feeding 
behaviour was also analysed using a binomial GLMM model with logit 
link, where data indicated the feeding status of the fish (1 = feeding, 0 =
not feeding). We included “transect” in the random part and used log 
(number of fish) as an offset in order to take into account for the 
different replicates within transect (status fish ~ offset(log(N of in
dividuals) + Habitat x Location + (1|Site|Location)+(1|transect/Site)). 
The data on counts and species number were fitted with a Gaussian, 
Poisson or a negative binomial distribution. Normality and homogeneity 
of residual variances for full GLMM models with the different distribu
tions were evaluated graphically and using the R package DHARMa in 
order to define the best fitting distribution (Hartig, 2020). The species 
number was best fitted using a Gaussian distribution, whereas fish 
density best fitted a negative binomial with log link function. 

We then used a model comparison approach to assess the relative 
strength of different competing models that included different combi
nations of the explanatory variables. Specifically, we evaluated the fit of 
the full model (M1) against simplified models that excluded the 
continuous variable size when present, removed the interaction or one 
of the main factors. To test for the overall significance, we also compared 
all models to a null model with no predictors. We compared models 
using Akaike’s Information Criterion for both the cathegorical and the 
abundance data, corrected for sample size bias (AICc). For the abun
dance data, we could use the R package bbmle (Bolker et al., 2021) and 
estimate delta-AICc (a measure of the strength of evidence of each model 
relative to the best model, which has the lowest AICc value: Δi = AICc,i – 
AICc,min), and AIC weights (wi, the probability that model i is the best 
fitting model). The resulting best fitted model was further explored by 
estimating significant levels of differences using pairwise post-hoc 
comparisons with least-squared mean estimates and t-test analyses 
corrected for Tukey’s multiple comparisons (eemeans function in the 
package eemeans). 

3. Results 

3.1. General description of fish assemblages 

We recorded a total of 17 fish taxa belonging to 8 families (Table S1). 

Fig. 2. Banquettes along the beach and PW patches in the surf zone (a, b: Pazzona beach, Stintino). a: satellite imagery freely available from Google earth; b: photo 
credit: Simona Bussotti. 
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Fish assemblages were numerically dominated by Atherina sp., followed 
by the sparids Diplodus sargus and D. vulgaris, and then the red mullet 
Mullus surmuletus (Table S1). Nine fish taxa were common to both 
habitat types (PW and SAND, Posidonia wrack and bare sands, respec
tively), 7 were exclusively associated to PW (i.e., the labrids Coris julis, 
Symphodus cinereus, S. ocellatus and S. tinca; the serranid Serranus scriba; 
the sparid Diplodus annularis and Sarpa salpa), while the flatfish Bothus 
podas was only found on SAND. 

3.2. Differences between habitats 

The species composition of the fish assemblages was clearly different 
between the two habitats (PW vs SAND), regardless of the interactions 
with location or site (Table 1). Assemblages also differed spatially, 
among both locations and sites. 

The nMDS plot showed a separation between fish assemblages 
associated with PW and SAND, with SAND assemblages more dispersed 
than PW ones, especially for the locations of Villasimius and Olbia 
(Fig. 3; dispersion analyses on the interaction location x habitat: pseudo- 
F = 7.46, p < 0.001). 

There were more fish taxa and higher fish density associated with PW 
than SAND if Atherina sp. was not considered (Fig. 4 a-c). Fish density 
and species number best fitted a model with only “habitat” as an 
explanatory variable (Table 2). Except the models including “habitat”, 
the other models displayed extremely poor fits (all wi < 2%). The 
abundance of Atherina sp. best fitted the null model (Table 2). 

The multivariate analysis of deviance identified 4 species showing 
significant differences between PW and SAND. Three of them, namely 
Diplodus annularis, D. vulgaris and Mullus surmuletus, showed significant 
differences only between habitats (p values < 0.005), whereas D. sargus 
showed differences both between habitats (p < 0.001) and among lo
cations (p < 0.05). Diplodus sargus, D. vulgaris and M. surmuletus were 
more abundant on PW than SAND (Fig. 4, d-f), while D. annularis only 
occurred in PW and no further analyses were run on this species. 

3.3. Size distribution of fish species identified by multivariate analysis 

In both PW and SAND, D. sargus was predominantly represented by 
very small and medium-sized individuals (from 3 to 20 cm total length, 
TL; Fig. 5, Fig. S1), whereas we did not detect very small individuals of 
the congeneric D. vulgaris. D. vulgaris individuals measuring <10 cm TL 
were only present on PW, whereas those between 10 and 16 cm TL were 
censused in both habitats. Individuals of M. surmuletus ranged between 6 
and 12 cm TL. 

The size distribution of these 3 species best fitted models that always 
included the factor “habitat”. The AICc comparisons showed that the 
models with only “habitat” were the best fit for both D. vulgaris and 
M. surmuletus, whereas the model including both “habitat” and “fish 
size” as explanatory variables was the best fit for D. sargus. The other 
models had extremely poor fits (all wi < 0.2 in Table 3). The estimated 
differences between PW and SAND were always highly significant (p <
0.001, Pairwise Tukey’s test comparisons). The model for D. sargus also 
showed a significant effect of “fish size” on the density distribution (p <
0.001). 

Because D. sargus size was important for explaining density distri
bution, we further explored the data with a model that included the 
interaction between “fish size” and “habitat”. The AICc comparisons did 
not show any improvement of model fit by including this interaction 
term (w = 0.99 and 0.005 for no interaction and interaction, Table S5). 

3.4. Fish behavior 

Multiple aspects of fish behavior were observed during visual as
sessments. All the most frequent and abundant species (namely Diplodus 
sargus, D. vulgaris, M. surmuletus, Sarpa salpa, Lithognatus mormyrus, 
Oblada melanura and Synphodus tinca) were observed feeding more often 

Table 1 
Multivariate Analysis of Deviance (mvabund R package) for fish assemblages, 
considering the full model: ~ Location + Site (Location) + Habitat + Location x 
Habitat + Site (Location) x Habitat with negative binomial. P-value is calculated 
using 999 iterations via PIT-trap resampling.   

Res.Df Df.diff Dev Pr(>Dev) 

Location (L) 51 2 63.14 0.009 
Habitat (H) 50 1 130.86 0.001 
Site (L) 41 9 137.35 0.002 
L x H 39 2 21.33 0.290 
Site (L) x H 36 8 56.30 0.158  

Fig. 3. Non-metric multidimensional scalings (nMDS) of fish assemblage 
structure for each location separately, assessed on density data (Bray–Curtis 
distances) and showing differences between the two habitats investigated. Each 
point represents a transect (n = 3) from each of the 3 sites. Missing points 
indicate that no fishes were observed in the transect. Locations are plotted 
separately to ease the legibility of the ordination plot. 
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above the wrack than on bare sand (Fig. 6). Specifically, D. sargus was 
mostly observed to peck on the substrate surface and seldom in the water 
column (just the very small individuals around 4 cm TL). Sometimes, 
small D. sargus and medium-sized Oblada melanura were observed 
feeding upon the particles/small prey resuspended by the feeding ac
tivity of other fishes, such as M. surmuletus and S. tinca. M. surmuletus 
was seen to spasmodically search for prey with barbels and mouth 
digging into the substrate, while S. tinca was observed to “chew and spit” 
to select prey from sediments and algal debris. 

A formal statistical analysis on feeding behavior was performed only 
for D. sargus, because of the limited number of observations available for 
the other species. The frequency of feeding acts of D. sargus was best 
fitted using a reduced model with “habitat” in the fixed part and 
“transect” for the random part. The first 3 best-selected models included 
the variables “habitat” and “transect” (Table 4). The analyses on the 
contrasts between PW and SAND showed significant differences, with 
more frequent feeding acts in PW than SAND (t-test = 3.14 p = 0.0013) 
and no differences within “transects” (Variance: 0.4238; p = 0.651). 
There was also no correlation between the D. sargus density per transect 
and the frequency of feeding acts. 

Fig. 4. Mean values of (a) species richness (average species number per transect; mean + SE), density (mean number of individuals 20/m2 + SE) of total fish with 
and without the numerical contribution of Atherina sp. (b and c) and of important species (d–f) in each habitat type investigated. PW = Posidonia Wrack; SAND: 
bare sand. 

Table 2 
Model selection for total density of individuals, and for the number of species and for abundance of Atherina sp). Models are arranged according to their decreasing fit to 
data. Density was fit to a negative binomial distribution. Number of species was fit to the normal distribution. See detailed results in Supplementary Materials (Tab. S3, 
S4).   

Explanatory variables included in the model logLik AICc dLogLik dAICc df Weight 

Density Habitat − 179.2 367.0 16.1 0.0 3 0.929  
Habitat + Location+1|Site − 173.8 373.5 21.5 6.5 6 0.035  
Location − 191.0 395.0 4.3 28.0 4 <0.001  
Null model − 195.3 395.7 0.0 28.7 2 <0.001  
Full Model − 172.2 396.5 23.0 29.5 8 <0.001  
1|Site − 172.2 396.5 23.0 29.5 8 <0.001 

Species number Habitat − 99.9 208.4 13.3 0.0 3 0.984  
Habitat + Location − 96.0 218.0 17.1 9.6 6 0.008  
Null − 113.3 231.8 0.0 23.0 2 <0.001  
Location − 112.1 237.2 1.0 28.9 4 <0.001  
Full Model − 92.9 237.8 20.2 29.4 8 <0.001  
Habitat x Location − 92.9 237.8 20.2 29.4 8 <0.001 

Atherina sp. Null  193.2   9   
Location  198.4   27   

Fig. 5. Size–structure of Diplodus sargus in the two habitats investigated 
expressed as percentage and obtained by pooling all transects from each and 
location. PW = Posidonia Wrack; SAND: bare sand. 
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In terms of predatory behaviour, we observed that adults of the 
piscivorous serranid Serranus scriba adopted a camouflage colour, i.e., a 
dark-brown livery, just above (the dark-brown) PW while ambushing 
juvenile specimens of Atherina sp. (swimming in the water column) and 
D. sargus (both swimming in the water column and close to the 
substrate). 

Juveniles of D. sargus, depending on size, have a semi-transparent 

body with visible organs and head. Based on our observations, they 
seemed to hide their silhouette by taking advantage of the dark-brown 
fragments of P. oceanica leaves resuspended above PW by water move
ments (sometimes caused by tourists walking in shallow waters, within 
1.5 m depth). 

4. Discussion 

4.1. Distribution of fish assemblages across the Posidonia wrack in the 
surf zone 

In this study we provide the first evidence that Mediterranean fish 
assemblages in the surf zone of sandy shores (in terms of species rich
ness, density and behaviour) associated with the habitat formed by 
P. oceanica wrack differ from those in adjacent bare sand, in agreement 
to studies done elsewhere (e.g. Robertson and Lenanton, 1984; Lenanton 
and Caputi, 1989; Crawley et al., 2006; Barings et al., 2014). It is well 
known that different nearshore habitat types, such as seagrasses, rocky 
reefs and sand, tend to host different fish assemblages (e.g., Francour, 
1994; Guidetti, 2000; Anderson and Millar, 2004; Chittaro, 2004; Tunesi 
et al., 2006; Bussotti and Guidetti, 2009; La Mesa et al., 2011; Giakoumi 
and Kokkoris, 2013). However, fish associated with macrophyte wrack 
beds have been examined to a less extent (Lenanton et al., 1982; Rob
ertson and Lenanton, 1984; Lenanton and Caputi, 1989; Ayvazian and 
Hyndes, 1995; Crawley et al., 2006; Baring et al., 2018) and no specific 
study has focused on the Mediterranean Sea. This is surprising because 
P. oceanica wrack beds are recognized as an important habitat, changing 
in time, shape and size in relation to local hydrodynamic conditions 
(Boudouresque et al., 2016; Vacchi et al., 2017). 

Some authors reported that several coastal fishes may spend part of 
their life in the surf zone, likely due to the availability of substrates/ 
habitats to forage or hide in (Laymann, 2000; Esposito et al., 2015) and 
that the surf zone is dominated by a few taxa (e. g. Modde and Ross, 
1981, Vanderklift and Jacoby, 2003; Esposito et al., 2015; Olds et al., 
2017), which is in agreement with our findings. We only found 1 species 
exclusively on sand, i.e., the flatfish Bothus podas which is expected since 
this species is typically associated with sandy substrata where it usually 
camouflages or burrows (Darnaude et al., 2001; Tunesi et al., 2006). 
More interestingly, 7 species were exclusively censused on Posidonia 
wrack: the labrids Coris julis, Sypmphodus cinereus, S. ocellatus and 
S. tinca, the sparids Diplodus annularis and Sarpa salpa, and the serranid 
Serranus scriba. Most of the remaining species, which included the 
numerically dominant D. sargus and D. vulgaris, and M. surmuletus, are 
well known to mostly inhabit rocky reefs and P. oceanica meadows 
(Francour, 1997; Guidetti, 2000; Ruitton et al., 2000; Garcia-Charton 

Table 3 
AICc model comparisons for the generalized linear mixed models on the density and size of D. sargus, D. vulgaris and M. surmuletus. We modeled data using a zero 
inflated negative binomial distribution for D. sargus, a zero-inflated Poisson distribution for D. vulgaris and M. surmuletus. See detailed results in Supplementary 
Materials (Tab. S2, S5, S6, S7).   

Explanatory variables in the model logLik AICc dLogLik dAICc df weight 

D. sargus Habitat + Fish size − 320.0 661.9 25.0 0.0 5 0.829  
Habitat+1|Site + Fish size − 316.5 666.0 28.5 4.1 6 0.108  
Fish size − 326.7 668.1 18.3 6.2 4 0.038  
1|Site + Fish size − 323.5 669.0 21.5 7.0 5 0.024  
Location+1|Site + Fish size − 321.8 676.5 23.2 14.6 6 <0.001 

D. vulgaris Habitat − 202.2 413.8 8.9 0.0 3 0.724  
Habitat+1|Site − 200.9 416.5 10.2 2.7 4 0.190  
Habitat + Fish size − 201.8 418.2 9.3 4.4 4 0.080  
Habitat+1|Site + Fish size − 200.8 423.7 10.3 9.8 5 0.005  
Null − 211.1 427.7 0.0 13.9 2 <0.001 

M. surmuletus Habitat − 114.5 238.4 7.1 0.0 3 0.811  
Habitat+ 1|Site − 113.8 242.4 7.8 3.9 4 0.114  
Habitat + Fish size − 114.5 243.6 7.2 5.1 4 0.063  
Null − 121.6 248.8 0.0 10.3 2 0.005  
Habitat+1|Site + Fish size − 113.7 249.3 8.0 10.9 5 0.004  
1|Site − 120.4 250.3 1.2 11.8 3 0.002  
Fish size − 121.5 252.5 0.1 14.0 3 <0.001  

Fig. 6. Frequency of feeding acts of important species in the two habitats 
investigated. PW = Posidonia Wrack; SAND: bare sand. 

Table 4 
AICc model comparisons for the generalized linear mixed models on the feeding 
behavior of D. sargus. Data were fitter to the binomial distribution. See detailed 
results in Supplementary Materials (Tab. S8).  

Fitted Model logLik AICc dLogLik dAICc df Weight 

Habitat+1|transect − 189.2 388.5 10.2 0.0 3 0.799 
Habitat − 193.5 392.8 5.8 4.3 2 0.091 
Habitat+1|Site+1| 

transect 
− 188.9 393.8 10.5 5.3 4 0.057 

Location+1|transect − 189.1 394.1 10.3 5.7 4 0.047 
1|Site+1|transect − 194.6 399.2 4.8 10.7 3 0.004 
Null − 199.4 401.3 0.0 12.8 1 0.001 
Location+1|Site+1| 

transect 
− 189.1 403.1 10.3 14.7 5 <0.001 

Location + Habitat+1| 
transect 

− 184.1 408.1 15.3 19.7 6 <0.001 

Full − 183.8 527.6 15.6 139.2 8 <0.001  
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and Perez-Ruzafa, 2001). The affinity of most species to rocky reefs and 
P. oceanica meadows also explains why there were differences among 
sites and locations in species composition, despite that the pattern of 
difference between habitats was consistent through the 9 beach sites and 
the 3 locations 100 kms apart. Some sampling locations and sites, in fact, 
were relatively close to rocks and seagrass beds than others. The fishes 
found on the PW habitat were therefore likely to move from adjacent 
rocky reefs and P. oceanica meadows. Without the presence of PW, these 
fishes would hardly cross bare sandy habitats that offer no shelter, as 
observed for other species in other ecoregions (see Robertson and 
Lenanton, 1984; Ayvazian and Hyndes, 1995; Crawley et al., 2006). 
suggesting that PW is an important habitat component (see Boudou
resque et al., 2016) together with living seagrass beds. 

Despite clear differences in density, fish size distribution did not 
change between habitat types. In both PW and SAND, we found that 
small- and medium-sized individuals widely dominated the assem
blages. High densities of very small individuals were found for the sparid 
D. sargus, which is consistent with its settlement-recruitment period 
(Vigliola et al., 1998; Bussotti and Guidetti, 2011). Likewise, Crawley 
et al. (2006), found that, in Southern Australia, winter accumulations of 
detached macrophytes in the surf zone provide a habitat for juvenile 
C. macrocephalus. In the surf zone, small- and medium-sized fish could 
minimize predator encounters, because this zone offers restricted access, 
and little maneuverability and foraging efficiency to large piscivorous 
fishes (Laymann, 2000; Inoue et al., 2008; Olds et al., 2017). Large 
predatory fishes could just perform rapid incursions or run their attacks 
successfully only when the sea is rough (Tobin et al., 2014; Esposito 
et al., 2015). As observed by Baring et al. (2014) along the southern 
Australian coast, predatory fishes tend also to move quickly within and 
between wrack accumulations in the surf zone. 

4.2. Fish behaviour across habitats 

We found that the most abundant species, the omnivore sparid 
D. sargus, showed more frequent feeding acts on PW than on SAND and 
that this behaviour was in common with other invertivorous fishes like 
M. surmuletus and several labrids (which have a diet mainly composed of 
small crustaceans, polychaetes, bivalves or gastropods), other omnivo
rous sparids (Diplodus spp., Lithognatus mormyrus and Oblada melanura) 
and the piscivorous Serranus scriba (Quignard and Pras, 1986; Sala and 
Zabala, 1996; Bautista-Vega et al., 2008; Kallianiotis et al., 2005; Thi
baut et al., 2017). Our observations substantially agree with the results 
showed by Baring et al. (2018) in a study conducted in South Australia. 

D. sargus along with O. melanura were observed swallowing the 
particles resuspended by the feeding activity of M. surmuletus and S. 
tinca. M. surmuletus is well known to form foraging associations with 
different species due to the very active foraging behavior involving a 
vigorous stirring up of sediments by their barbells and mouth (Randall, 
1967; Golani and Galil, 1991). S. tinca is known to “chew and spit” sand 
and vegetal debris to then select prey or feeding particles, of which other 
labrids and the two-banded seabream D. vulgaris often take advantage 
(Zander and Nieder, 1997; Molino, 2008). 

These observations suggest that PW beds represent foraging areas. 
The presence of PW could provide invertebrate preys and, in turn, in
crease availability of small fishes for piscivorous predators. Studies 
conducted in southwestern Australia reported particularly high densities 
of crustacean amphipods in wrack accumulations (Robertson and Lucas, 
1983) and in the stomachs of fish feeding on them (Robertson and 
Lenanton, 1984; Crawley et al., 2006; Baring et al., 2018). Vanderklift 
and Jacoby (2003), moreover, reported a significant relationship be
tween species number, abundance or biomass of invertivorous fishes and 
the amount of drifting plant material in sandy substrates adjacent to 
seagrass beds. Even if similar studies are lacking for the Mediterranean 
Sea, some papers report significant abundances of prey for invertivorous 
fishes (e.g., crustaceans, mollusks, meiofauna species) within the 
detritus accumulating within P. oceanica meadows or within bottom 

depressions, between stones or boulders (Dimech et al., 2006; Gall
metzer et al., 2005; Como et al., 2008; Remy et al., 2018; Mascart et al., 
2015; Costa et al., 2019). 

Some fishes could use PW beds to minimize predator encounters 
before reaching adult size, whereas medium-sized fishes could hide to 
ambush invertebrate or fish prey. We found the piscivorous Serranus 
scriba specimens camouflaged by getting a dark-brown livery while 
preying just in PW beds upon very small specimens of Atherina sp. and 
D. sargus. The semi-transparent body of D. sargus, moreover, was hardly 
detectable within the resuspended wrack fragments, which could be a 
specific strategy to hide from visual predators. (Re)suspended wrack 
particles could also reduce the light penetration (Lasiak, 1986; Moore 
et al., 2004). This mimetic livery is also displayed by juveniles of the 
congeneric species D. puntazzo (showing typical brown bands) in 
shallow waters, and by small individuals of the labrid Coris julis in 
deeper P. oceanica leaf detritus accumulations (Author’s, personal ob
servations). Dark liveries and reduced light penetration make these 
small fishes hardly detectable by fish and avian visual predators, such as 
cormorants in the study area, similarly to what observed elsewhere 
(Lenanton et al., 1982; Robertson and Lenanton, 1984). 

4.3. Implications for management 

This study, besides the specific results discussed here, has direct and 
indirect implications for management. P. oceanica wrack beds could 
have, in fact, crucial ecological roles, providing food and shelter to ju
venile and subadult fish, some of commercial value, such as Diplodus 
sargus, D. vulgaris and M. surmuletus, targeted by commercial and rec
reational fishers. Further studies are required to measure the “manger 
effect” of wrack beds (attraction/concentration of fish for foraging) and 
quantify how much P. oceanica detritus may contribute to prey avail
ability for these fishes. This study also highlights that the current decline 
of several vegetated habitats could have negative consequences 
extending far beyond the areas where seagrasses grow (Heck et al., 
2008). Conservation efforts to sustainably manage seagrass meadows 
should thus also take into proper account the seagrass wrack with pro
tection measures that should be extended to the habitats receiving 
phytodetritus (Heck et al., 2008; Boudouresque et al., 2016; Unsworth 
et al., 2018). 

We should also consider that the wrack in the surf zone does not 
come only directly from the Posidonia meadows. but also from the wrack 
accumulated on the supralittoral beach (Vacchi et al., 2017). In touristic 
regions like the Mediterranean, beach wrack raises certain 
non-negligible socio-economic issues: tourists, residents and policy 
makers often perceive the PW as unpleasant and an ecosystem ‘disser
vice’, driving beach grooming and sand nourishment procedures for 
their removal (Ruiz Frau et al., 2019). We hope our study could 
contribute to making stakeholders more aware that this practice is a 
threat for the shore and for biodiversity. In order to improve conserva
tion and restoration measures, we strongly believe that scientific evi
dence together with education programs and support for proper 
management protocols (Zakhama-Sraieb et al., 2011; Rotini et al., 2020) 
could help persuade policy makers, local stakeholders and tourists that 
PW along the beaches and in the surf zone is just “natural” and so 
beneficial for beach protection against erosion and the associated 
biodiversity. 
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